
Journal of Nutritional Bio
REVIEWS: CURRENT TOPICS

Digestible and indigestible carbohydrates:

interactions with postprandial lipid metabolism

Denis Lairon4, Barbara Play, Dominique Jourdheuil-Rahmani
INSERM, 476 TNutrition Humaine et lipidesr, Marseille F-13385, France

INRA, 1260, Marseille F-13385, France
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Abstract

The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary

mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for

absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on

available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial

state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and

molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible

carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas

some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied

mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of

cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently

been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial

insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the

postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction: the importance of postprandial lipemia

Most people in Western countries consume fat-contain-

ing meals at regular 4- to 5-h intervals and, frequently,

snacks and drinks. Following the consumption of a typical
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fat-containing meal (30–60 g of fat), circulating triacylgly-

cerols (TGs) show a pronounced increase (i.e., postprandial

lipemia) after 1 h and can remain high for 5–8 h [1]. It is

therefore likely that the usual state of TG metabolism for

most humans is postprandial [2–5].

As illustrated in Fig. 1, the postprandial period is

characterized by a physiological transient accumulation of

triglyceride-rich lipoprotein (TRL) particles in the circu-

lation, provided both by the liver [in the form of very-

low-density lipoproteins (VLDLs) in the fasting state] and

by the small intestine (chylomicrons secreted specifically

after lipid digestion and absorption). Through this post-

prandial process, adipose tissue is efficiently filled with

lipid moieties, and the resulting accumulated remnant

particles in the circulation can be taken up by the arterial

wall (atherogenic particles): the remainder is finally

cleared from the circulation, mainly by the liver. The

capacity of individuals to regulate circulating TG levels
chemistry 18 (2007) 217–227



Fig. 1. Lipoprotein-mediated lipid transport in humans. Both TGs and CEs are transported into the core of lipoproteins, while polar lipids and apoproteins at the

aqueous interface critically determine interactions with enzymes and cellular receptors that control this complex transport system. Different lipoproteins are

represented by gray circles or ellipses. Different arrows indicate different routes that are followed by the lipoproteins. AI, AII, AIV, B48, B100, CII, CIII and E

denote apos of the same name. Postprandially, the small intestine delivers chylomicrons that are rapidly transformed into chylomicron remnants by lipoprotein

lipase bound to the luminal surface of capillary endothelial cells. Chylomicron remnants are then processed by hepatic lipase (HL) and taken up by liver cells

via receptor-mediated endocytosis, equivalent to the mechanism of uptake of LDL. VLDLs secreted by the liver are hydrolysed by LPL, producing smaller

particles called intermediate-density lipoproteins (IDLs), which are converted by HL into LDL. The process of HDL maturation begins with the secretion of

nascent HDL particles by the liver and the intestine, followed by particles that are more cholesterol-enriched. The lecithin acyl transferase (LCAT) enzyme,

which is carried on HDL particles, esterifies FC molecules to form CEs, which migrate to the core of the HDL particle to form mature HDL particles.

Cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP) mediate the exchange of CE and PL between TRL and HDL. HDL remnants

may bind to putative hepatic receptors that mediate HDL uptake, internalization and degradation. Hepatic SR-BI may also contribute to the modification of

circulating HDL particles, promoting their uptake and degradation. Peripheral cells take up LDL and chylomicron remnants by receptor-mediated endocytosis

and exit cholesterol through HDL by HDL receptors and scavenger receptors. FABP, fatty acid binding protein; LCFA, long chain fatty acid; MG,

monoacylglycerol; TG, triacylglycerol.
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and to clear TRLs can be modulated by various gene

polymorphisms [6–9]. It is now recognized that high

postprandial lipemia is a characteristic metabolic abnor-

mality of a number of lifestyle-related conditions that are

associated both with increased morbidity (such as hyper-

triglyceridemia, metabolic syndrome, obesity and Type 2

diabetes) and mortality, especially from cardiovascular

diseases [10–14].

Most daily meals are mixed meals made of various

foodstuffs that provide numerous nutrients, including lipids,

digestible carbohydrates (starch, sugar, etc.) and indigestible

carbohydrates (e.g., mostly fibers). This means that post-

prandial metabolism resulting from the digestion and

absorption of available nutrients is a highly complex process

involving numerous potential interactions. This is reinforced

by the fact that current diets are especially rich in fats and

readily available carbohydrates and are poor in dietary fibers

[15], in the context of a sedentary lifestyle [16].

In this review, we will update available knowledge on

the interactions between digestible or indigestible carbo-

hydrates and postprandial lipid metabolism in humans.
Emphasis will then be placed on mechanisms involved in

the alterations observed.
2. Effects of dietary carbohydrates on postprandial lipid

metabolism in humans

2.1. Digestible carbohydrates

Clinical studies support the concept that diets rich in

highly digestible carbohydrates can lead to high levels of

fasting plasma TGs as a result of hepatic VLDL and

chylomicron remnant accumulation due to altered lipopro-

tein secretion and/or clearance, as reviewed [17,18].

Moreover, several studies have shown that the amount or

the nature of carbohydrates in an individual meal can alter

postprandial lipid metabolism. The addition of glucose

(50–100 g) to fatty test meals may or may not increase

postprandial lipemia in healthy subjects [19–21], whereas

the addition of sucrose [22] or fructose [23,24] markedly

increases postprandial triglyceridemia. The addition of 75 g

of oligosaccharide mixture to a fatty meal can reduce
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(�10%) postprandial triglyceridemia [25]. In healthy sub-

jects, starchy foods (white bread and pasta) do not induce

noticeable alterations in the overall postprandial TG

response but induce a late accumulation of apolipoprotein

(apo) B48-containing chylomicrons [26]. In subjects with

insulin resistance, the ingestion of a high-glycemic index

mixed meal can, to some extent, raise postprandial hyper-

triglyceridemia by stimulating the accumulation of apoB100-

and apoB48-containing TRLs [27]. Finally, adding various

digestible carbohydrates to a test meal can elicit a biphasic

response of postprandial lipemia [27,28].

Taken together, these data indicate that readily digestible

carbohydrates and, more markedly, fructose have the

potential to cause exacerbated postprandial lipemia in

response to a fatty meal in humans.

2.2. Dietary fibers

Adding certain dietary fiber sources to mixed test meals

[29,30] at the level of 4–10 g/meal can, to some extent,

reduce the postprandial triglyceridemia and cholesterolemia

generated by a mixed meal. Sources of soluble viscous

cholesterol-lowering fibers (i.e., oat bran) or those with

hypotriglyceridemic properties (i.e., concentrated wheat

fiber or wheat germ) have been shown to display such an

effect postprandially. In another study, a high-fiber diet

(41 g/day) induced lower plasma glucose and insulin peaks

compared with a low-fiber diet (12.4 g/day) at the end of a

day-long follow-up, together with a nonsignificant trend to

lower diurnal TG levels [31]. A few of the other studies

using other sources of dietary fibers (oat fiber, pea fiber,

soybean fiber and psyllium) have not shown these alter-

ations of postprandial lipid parameters.
3. Mechanisms involved during processing in the gut

3.1. Gastric emptying

It has been reported that adding a moderate dose of

glucose (75 g) to a fatty meal resulted in a 2-h delay in

gastric emptying in healthy subjects [21]. The addition of

75 g of digestible oligosaccharides also caused a significant

delay in gastric emptying [25]. While the overall effects of

various sources of dietary fiber on gastric emptying have

been known for a long time [32], a specific effect on dietary

lipids has not been reported.

3.2. Lipid digestion

In the gut of humans and monogastric animals, dietary

lipids are present in the form of heterogeneous emulsified

droplets [33]. TG digestion first occurs in the stomach and is

catalyzed by gastric lipase [34], while most fats are further

hydrolyzed in the duodenum and jejunum under the action

of pancreatic lipase [33]. Lipolytic products that are

generated are dispersed in the form of vesicles and mixed

micelles [35], which interact with the intestinal mucosa to

ensure the uptake of lipid moieties. Several steps in this very
complex process can be altered in the presence of digestible

or indigestible carbohydrates.

Chronic dietary regimens rich in digestible carbohydrate,

unlike fat-rich ones, are known to lower the levels of lipases

secreted by the gastric mucosa or the pancreas into the small

intestine [36,37]. Conversely, regimens rich in some dietary

fiber (wheat bran, pectins and guar gum) have been shown

to increase lipase concentration and output into the

duodenum, possibly due to a compensatory mechanism to

counteract lipase binding [38].

To our knowledge, the ability of digestible carbohy-

drates to alter some steps in the process of fat digestion

has not been thoroughly investigated. In contrast, a number

of in vitro studies have shown that dietary fibers can alter

the lipolysis process. Two main mechanisms have been

recognized. Some soluble fibers forming viscous solutions

(range, 0–20 mPa/s) drastically reduce the rate of lipid

emulsification, with a resulting noticeable lowering of the

extent of fat lipolysis [39,40]. This has been confirmed in

laboratory animals with guar gum [41] and in ileostomized

subjects with oat bran [30]. Other fibers, such as chitosan,

can generate aggregates with lipid globules and conse-

quently lower the extent of lipolysis [42]. Finally, some

extractable soluble proteins present in wheat bran and

germ can have an inhibitory effect on pancreatic lipase

catalytic activity, as shown in vitro [38] and in laboratory

animals [43].

3.3. Lipid micellization

It has been shown for a long time in vitro [38,44] and

during some animal experiments [45] that various dietary

fiber sources can bind bile acids, as well as mixed micelle

components such as monoacylglycerols (MGs) and free

fatty acids (FAs) or free cholesterol (FC), thus explaining

the partial disruption of the micellization process, leading to

reduced micellar solubilization of lipid moieties and, finally,

to blunted and/or delayed intestinal uptake of lipid moieties

and cholesterol [46]. This was confirmed during a study in

ileostomized subjects [30] where an oat-bran-enriched meal

significantly increased MGs (11.4-fold) and FAs (2.4-fold)

present in 24-h ileostomy effluents.
4. Mechanisms involved during intestinal absorption

4.1. Intestinal lipid absorption and intracellular processing

The next step in lipid assimilation is the uptake process

occurring at the enterocyte brush border membrane. The

intestinal absorption of cholesterol and fatty acids or MGs is

a multistep process that is regulated by multiple genes at the

enterocyte level, and the mechanisms by which lipid

absorption occurs are simple passive diffusion [47,48] and

protein-facilitated processes [49–52]: different potential

intestinal lipid transporters have recently been identified,

as illustrated in Fig. 2. Two of these, belonging to

the multiligand scavenger receptor family, regulate the



Fig. 2. Mechanisms of the intestinal absorption of sugars and lipid moieties. (A) Glucose and galactose transport across the brush border occurs by a sodium/

glucose (galactose) cotransporter (SGLT1), while passive fructose transport is mediated by a uniporter, glucose transporter (GLUT) 5. The exit of all three

sugars out of the cell across the basolateral membrane occurs through GLUT2. (B and C) FAs, MGs and FCs are dispersed in the luminal lumen as mixed

micelles and are then absorbed through the brush border membrane by enterocytes. (B) Short-chain fatty acids (SCFAs) diffuse passively across the membrane.

For LCFA and MG transport, several proteins have been identified and proposed as candidates for transporters. These include FABPpm, FATP4 (a member of a

large family of FA transport proteins), CD36 and Cav-1. Within intestinal cells, FAs are bound to the liver FABP (LFABP) and the intestinal FABP (IFABP)

and used for the de novo synthesis of TGs and phospholipids. The MTP facilitates the transfer of FAs translocated in the ER lumen into the intestinal

chylomicrons (and VLDL). (C) FC absorption is mediated by the facilitated transporters SR-BI, CD36 and NPC1L1. Within intestinal cells, the absorbed FC is

esterified, forming CEs, which are catalyzed by the acyl CoA cholesterol acyl transferase 2. MTP facilitates the transfer of CE to intestinal chylomicrons and

VLDL, secreted into the basolateral medium space. ABC transporters are involved in cholesterol efflux (ABCG5/ABCG8 transport cholesterol from the cell

into the intestinal lumen, and ABCA1 transports cholesterol from the cell to the bloodstream).
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absorption of various substrates. Scavenger receptor class B

type I (SR-BI) facilitates the intestinal uptake of cholesterol,

TGs and other lipid nutrients [53–57], while cluster

determinant 36 (CD36)/FAT interacts with MGs or FAs

and participates in cholesterol absorption [57–59] with the

involvement of caveolin-1 (Cav-1), which mediates vesic-

ular uptake [60].

In addition to these scavenger receptors, more specific

intestinal membrane lipid transporters have been identified.

It has been suggested that FAs are carried into enterocytes

by a fatty-acid-binding protein (FABP) bound to the fatty-

acid-binding protein plasma membrane (FABPpm) and by a

fatty acid transport protein 4 (FATP4) [60]. The Niemann–

Pick type C1 like 1 protein (NPC1L1) transporter has been

identified as being critical for the absorption of both

cholesterol and plant sterols [61–64], while members of

the ATP-binding cassette (ABC) family (ABCG5, ABCG8

and ABCA1) are involved in efflux processes. ABCG5

and ABCG8 represent apical sterol export pumps that

promote the active efflux of cholesterol and plant sterols

from enterocytes back into the intestinal lumen for

excretion [65,66], thus limiting the intestinal absorption of

neutral sterols. ABCA1 located in the basolateral membrane

of enterocytes is involved in the efflux process of

cholesterol towards circulating high-density lipoproteins

(HDLs) [67–69].
Once uptake has been achieved, lipid moieties have to be

channeled through enterocytes before secretion into the

basolateral space. While the processes of intracellular

cholesterol transport are largely unknown, fatty acid

trafficking has been more extensively studied. Members of

the FABP family characterized in enterocytes ensure this

function: intestinal FABP is thought to be involved in the

intracellular transport of FAs [70,71], while liver FABP

more specifically binds long-chain fatty acids (LCFAs) and

lysophosphatidylcholines [72,73]. The last intracellular step

for FAs and cholesterol is resynthesis into TGs and

cholesterol esters (CEs), before assembly and secretion into

intestinal triglyceride-rich apoB48-containing lipoproteins.

This step is critical for the transport of lipid moieties and

requires the microsomal triglyceride transfer protein (MTP)

[74,75]. In addition to chylomicron assembly, enterocytes

have been shown to transport dietary cholesterol via an

apoB-independent pathway [76–78], with the involvement

of ABCA1 [69,79].

4.2. Glucose regulates intestinal lipid absorption

Studies undertaken to characterize intestinal lipid ab-

sorption are most generally performed through in vitro

experiments, where lipids are dispersed in micelles or

vesicular structures without consideration for any other

nutrients. However, in vitro and in vivo studies have



D. Lairon et al. / Journal of Nutritional Biochemistry 18 (2007) 217–227 221
revealed relationships between glucose levels and lipid

uptake. High extracellular glucose concentration signifi-

cantly increased brush border membrane fluidity and

permeability at tight junctions in human intestinal Caco-2

cells [80] and isolated loops of the small intestine [81].

Thus, glucose affects the transepithelial transport of

nutrients permeating the cell barrier by paracellular trans-

cellular passive diffusion and facilitated transport [80,82].

It is likely that there is an indirect regulation of intestinal

lipid uptake by dietary glucose. This hypothesis has recently

been confirmed by several in vivo and in vitro studies.

An inverse relationship between glycemic load and HDL

cholesterol has been described [83–85]. It has been

observed that women who consumed more cholesterol with

a low carbohydrate intake had lower concentrations of low-

density lipoprotein (LDL) cholesterol than women with a

high carbohydrate intake [86]. In vitro, a short-term

incubation (3 h) of intestinal Caco-2 TC7 cells with glucose

on the apical side induced a significant increase of cholesterol

uptake in a dose-dependent manner [87]. The mechanism

involved in this glucose-induced regulation of uptake process

is not yet fully identified. An alteration of the physical

properties of the enterocyte brush border, which in turn

regulates the activity of membrane transporters, is probable,

but other regulation pathways should also be considered.

Dietary glucose transport initially occurs through sodium

glucose transporter 1 (SGLT1) (Fig. 2A), which modulates a

protein kinase C (PKC) signaling pathway distinct from the

insulin signaling pathway [88–90]. Cell exposure to high

glucose leads to the down-regulation of both PKC mRNA

[91] and protein activities [92]. Moreover, a PKC pathway

affects the different mechanisms of cell lipid metabolism. It

regulates both intestinal cholesterol absorption [87] and

possibly FA uptake (unpublished observations) and choles-

terol uptake from HDL [93]; it also decreases lipid

accumulation in human macrophages [94] and is implicated

in the expression levels of lipid transporters such as SR-BI

[95], ABCA1 [96] and MTP [97]. Thus, a PKC pathway

regulates both cholesterol and glucose uptakes and may be a

link between the two metabolic processes.

Mechanisms by which the PKC pathway regulates

cholesterol uptake remains to be identified. However, there

may be two different modes of regulation of the activity of

intestinal cholesterol transporter(s). First, a direct interac-

tion with membrane transporter(s) by (de)phosphorylation

at its intracellular domain, inducing regulation of protein

activity, can be hypothesized. Indeed, intracellular domains

of some enterocyte lipid transporters contain conserved

potential phosphorylation sites for PKC [98–100]. Second-

ly, glucose-induced regulation of the lipid transporter

expression level at the intestinal brush border is also

possible. After a long-term exposure to high glucose

concentrations, mRNA levels for ABCA1, SR-BI [101]

and CD36/FAT [102] increased. Interestingly, ABCA1

expression was inversely correlated with fasting glucose

concentration in normoglycemic men [68]. It is noteworthy
that some gene polymorphisms have been associated with

different variables of glucose and cholesterol metabolism

[103]. The regulation of lipid transporter expression may

be due to gene promoter activity being enhanced by high

glucose at the transcriptional level [101]. These data are of

concern and suggest that dietary patterns resulting in an

increase in dietary glucose uptake may have an unfavor-

able influence on blood lipids.

4.3. Interaction of insulin with cholesterol absorption

After short-term incubation, insulin at postprandial levels

was inefficient in regulating lipid absorption in intestinal

Caco-2 cells (B. Play et al., unpublished data), indicating

that dietary glucose is able to stimulate cholesterol

absorption by an insulin-independent mechanism. On the

other hand, after long-term cell incubation with high insulin

levels or in diabetics, intestinal cholesterol absorption is

altered. Cholesterol absorption efficiency is low in Type 2

diabetes [104,105] and high in Type 1 diabetes [106,107],

suggesting an insulin-regulated pathway with a possible

involvement of ABCG5 and ABCG8 transporters. Indeed,

the expression of abcg5 and abcg8 genes is down-regulated

in Type 1 diabetes [106,107] and in streptozotocin-induced

diabetic rats [108]: in the latter case, insulin supplementa-

tion partially normalizes the cholesterol absorption level

[108]. Thus, a high insulin level is potentially able to induce

a high expression of enterocyte ABCG5 and ABCG8, which

in turn increases intracellular cholesterol efflux into the

intestinal lumen. As a result, intestinal cholesterol absorp-

tion decreases and elimination increases.

While ABCG5 and ABCG8 are potential targets for the

insulin-regulated absorption process, other lipid transporters

are of potential interest, too. However, there is limited

information as to whether the expression of these proteins is

altered in intestinal tissues. It is noteworthy that FAT/CD36

too is up-regulated at the transcriptional level in obesity and

Type 2 diabetes [102,109], and that gene variations

modulate glucose homeostasis and contribute to the

metabolic syndrome associated with Type 2 diabetes

[110]. The hormonal induction of SR-BI has already been

established, with protein expression increasing in strepto-

zotocin-induced diabetic rats [111] and decreasing after in

vivo insulin treatment [112]. Obviously, insulin is involved

in a long-term regulation process that takes place in

enterocytes and modulates nutrient absorption. Its mode of

action has not yet been fully characterized, but insulin may

either act directly on gene promoters or act indirectly by

modulating the activity of transcription factors regulating

the expression of some lipid transporter genes.

In conclusion, the regulation by glucose of mechanisms

involved in intestinal absorption occurs over two distinct

time scales: one over minutes and hours (dietary sugars and

readily available carbohydrates) and the other over days

(glycemia and insulinemia). It appears that dietary glucose

may regulate cholesterol absorption by a short-term

mechanism that probably involves a PKC pathway. In
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contrast, glycemia may regulate cholesterol absorption by a

long-term mechanism involving insulin action.

4.4. Overall effect of digestible carbohydrate on intestinal

lipid absorption and resecretion

If absorbable monosaccharides stimulate intestinal ab-

sorption and/or resecretion of dietary lipids by the small

intestine, this should result in an increased output of

chylomicrons into the circulation. Indeed, several studies

have reported such observations in humans. A recent study

in healthy humans provided the very interesting observation

that, compared to water, the ingestion of glucose (38 g) 5 h

after a fat meal led to less lipid staining in the jejunal

mucosa and submucosa and increased postprandial rises in

chylomicron TGs and apoB48 [113]. The authors concluded

that, after a fat load, fats are partly retained within the

jejunal tissues and are released further into the plasma

following glucose ingestion.

Adding a moderate dose of glucose (75 g) to a fatty meal

in healthy subjects resulted in a noticeable delay in the

occurrence of the chylomicron peak in line with a 2-h delay

of gastric emptying [21]. Moreover, the addition of an

oligosaccharide mixture (75 g) to a fatty meal resulted in a

2-h delay and in reduction (�11%) in postprandial

chylomicron response in healthy subjects [25]. Conversely,

the addition of fructose (50 g) to a fatty meal (5 or 40 g)

resulted in markedly higher postprandial concentrations of

TGs in chylomicron fractions, as well as of retinyl palmitate,

a marker of chylomicron remnants [23,24]. In the hamster

model, it has clearly been shown that fructose enhances the

secretion of apoB-containing intestinal lipoproteins during

fat feeding [114].

Finally, it has been reported very recently that intestinal

Caco-2 cells adapted for 2 weeks to a low glucose

concentration (0 and 5 mM glucose in apical and basal

compartments, respectively) secrete more TRL (2.1-fold)

than cells cultured at a high glucose concentration (25 and

25 mM glucose in apical and basal compartments, respec-

tively) by an increase in the TGs available for lipoprotein

assembly in the endoplasmic reticulum (ER) lumen [115].

4.5. Dietary fiber and intestinal lipid

absorption and resecretion

Overall, it has been recognized for a long time that a

meal or a diet enriched in certain dietary fibers (oat bran,

barley fiber, pectins, gums and wheat germ) can signifi-

cantly increase fecal fat excretion (generally by twofold to

fourfold) in humans or experimental animals [30,116].

As shown in vitro and with animal models, increasing the

viscosity of the intestinal content to a sufficient extent alters

organ motility, potentially decreases intraluminal mixing

and increases the thickness of the unstirred water layer at the

intestinal mucosa. These combined effects likely explain

the observed reduced rates of the intestinal uptake of

cholesterol and fatty acids (as well as glucose) in the

presence of viscous fibers [46].
To our knowledge, it has not yet been reported that

dietary fiber can alter intracellular processes involved in

lipid trafficking within enterocytes.

Evidence that intestinal lipid (oleic acid and cholesterol)

resecretion can be impaired in the presence of some fibers

has been provided by animal studies with lymph cannula-

tion [117], but variable effects have been observed after

chronic or acute supplies of fiber sources.

Although this phenomenon is not quantitatively very

great, the observations made highlight the interference that

some dietary fibers can exert on physicochemical conditions

within the intestinal lumen, leading to delayed and/or reduced

intestinal uptake and resecretion into the bloodstream.

Indeed, our laboratory has undertaken several studies

addressing the question of whether sources of dietary fiber

can alter postprandially the chylomicron output from the

small intestine into the circulation of healthy subjects. In

one study [29], adding 10 g of dietary fiber into a test meal

in the form of concentrated wheat fiber significantly reduced

(�21%) the chylomicron TG area under the curve (AUC)

postprandially and, this source, together with others (wheat

germ and oat bran), significantly reduced (�29% to 55%)

the chylomicron cholesterol AUC. This was not observed

with pea or soybean fibers. In another study [30], adding

10 g of oat bran into a test meal led to a 37%, 43% and 31%

lowering of postprandial chylomicron TG, cholesterol or

phospholipid responses, respectively. While a few of the

other studies performed have not shown such effects with

other fiber sources, our data support the concept that some

fiber sources can, by altering lipid processing in the gut and

probably resecretion, lower the accumulation of intestinally

derived chylomicrons in the circulation postprandially.

Depending on the study, reduced postprandial glycemia

and/or insulinemia was or was not observed concomitantly

with changes in postprandial lipemia. This suggests that

changes in postprandial fluxes of glucose may alter, directly

or indirectly through insulin response, chylomicron secre-

tion from the small intestine, as discussed above.
5. Mechanisms involved in the postabsorptive state

In addition to the mechanisms discussed above, one

remaining key question regarding the interaction of carbo-

hydrate with postprandial lipid response relates to the

respective role of a direct effect of elevated glycemia or

an indirect effect through induced hyperinsulinemia or both

on peripheral tissues. While available knowledge is insuf-

ficient to allow for a definitive evaluation, we will briefly

discuss these aspects, which are illustrated in Fig. 3.

5.1. Effect of postprandial glucose and fructose

It has been known for a long time that lipogenesis can

take place in the liver, generating fatty acids from glucose

and thus stimulating the synthesis of hepatic TGs, as well

as VLDL assembly and secretion. Nevertheless, except

under extreme nonphysiological conditions (i.e., chronic



Fig. 3. The interactions of carbohydrates and insulin with the postprandial metabolism of lipoproteins. Different lipoproteins are represented by gray circles.

Different arrows indicate the different actions of carbohydrates (black arrows) and insulin (white arrows). AIV, B48, B100, CII, CIII and E denote apos of the

same name.
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70% carbohydrate diet), lipogenesis only marginally

accounts for the de novo synthesis of TGs in humans

[118]. It is thus unlikely that glucose plays a key role

through this mechanism. Conversely, fructose is a preferred

substrate for lipogenesis, and this process is thus expected

to play an important role in the fasting TG-raising property

of fructose-rich diets in both human and animal models.

Clearly, fructose enhances VLDL accumulation and secre-

tion by the liver [114]. Nevertheless, it is not known

whether this process can explain the marked postprandial

elevation of either VLDL in some studies and/or chylomi-

crons in others. The fact that fructose or starchy foods

generating glucose can both specifically enhance postpran-

dial chylomicron accumulation suggests that other organs

(such as the small intestine) are involved, in line with

mechanistic observations as reported. The possibility that

fructose acutely alters liver capacity to clear chylomicrons

remnants, leading to exacerbated accumulation in the

circulation, cannot be excluded.

5.2. Effect of postprandial insulin

After the ingestion of a mixed meal containing

digestible carbohydrate-generating glucose, the resulting

transient postprandial hyperglycemia is accompanied by

dose–response hyperinsulinemia. In contrast, fructose only

displays a light hyperinsulinic effect (about 20% that of

glucose). It is well known that insulin level is an important

modulator of several key aspects of lipid homeostasis,

especially de novo fatty acid and cholesterol synthesis,

hepatic VLDL production and secretion, or lipoprotein

lipase expression and activity [119]. Because fructose

stimulates postprandial lipemia more markedly than
glucose, it is unlikely that the direct effect of insulin is

crucial in healthy subjects. In addition, correlations

between hyperinsulinemia and hypertriglyceridemia during

the cited postprandial studies have not systematically

been found. Nevertheless, clamp studies in humans have

clearly shown that hyperinsulinemia leads to lower hepatic

VLDL concentrations.

Moreover, postprandial hyperinsulinemia (modulated

using different mixed test meals generating more or less

glucose) has been shown to cause a late postprandial

accumulation of intestinally derived apoB48-containing

chylomicrons in healthy humans [26]. This phenomenon

has also been observed, even more intensely, when a

glycemic meal is replaced by a 3-h euglycemic–hyper-

insulinic clamp superimposed on a no-carbohydrate meal

[26]. Thus, it has been concluded that hyperinsulinism per

se is a key determinant of an abnormal pattern based on a

late accumulation of intestinally derived chylomicrons and

remnants with no alteration in the number of hepatic VLDL

(as apoB100). Considering the kinetics obtained, it has also

been suggested that hyperinsulinemia may transiently block

the secretion of apoB48 particles, leading further to

exacerbated release in the late postprandial period. As

mentioned above, from our studies using the human

intestinal Caco-2 cell line (unpublished observations),

hyperinsulinemia does not seem to noticeably alter the level

of intestinal lipid uptake and basal lipid secretion.

It is noteworthy that, in subjects with insulin resistance,

exacerbated postprandial lipid responses are induced by the

addition of carbohydrates. Moreover, ingestion of a high-

glycemic index mixed meal, as compared to a low-

glycemic index meal, increases the postprandial rise in
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glycemia and insulinemia and the accumulation of both

apoB100- and apoB48-containing TRLs in these subjects,

thus increasing postprandial triglyceridemia and modifying

the kinetics of peak occurrence [27]. This suggests that, in

the presence of insulin resistance, both hepatic and

intestinal TRL patterns are affected by the postprandial

hyperinsulinic state.

To summarize, depending on the specific study, con-

comitant changes in postprandial lipid parameters and

insulinemia have been reported or not. This indicates that

a direct relationship between postprandial insulin levels and

lipoprotein particle accumulation is a complex process

requiring further investigation.
6. Conclusion

Based on the worldwide phenomenon of ongoing

changes in dietary patterns and reduced physical activity,

a key unsolved unanswered question in nutrition science is

the respective role of dietary fats and digestible/indigestible

carbohydrates in health and emerging diseases. High

dietary fat intake, exacerbating postprandial lipemia and

altering the overall lipoprotein pattern, has been established

and acknowledged as a cardiovascular risk factor. Con-

versely, digestible and indigestible carbohydrates have been

recommended, while a high intake of sugars is generally

thought to be detrimental. Nevertheless, setting sound and

more conclusive dietary recommendations requires a

detailed understanding of how dietary carbohydrates and

fats interact and modulate key metabolic pathways in the

postprandial state.

In this review, we focus on available knowledge on the

interactions of digestible or indigestible carbohydrates with

lipid and lipoprotein metabolism in the postprandial state.

We report that digestible carbohydrates, especially readily

digestible starches or fructose, tend to exacerbate and/or

delay postprandial lipemia, whereas some fiber sources can

display lowering effects. While interactions between dietary

fibers and the process of lipid digestion and absorption have

been investigated during the last decades, recent studies

have shown that dietary carbohydrate moieties (e.g.,

glucose) can stimulate both the intestinal uptake of

cholesterol and lipid resecretion. It appears that the

interactions of carbohydrates and lipid moieties in the

postprandial state may result from both acute (dietary sugars

and readily available carbohydrates) and chronic effects

(hyperglycemia and hyperinsulinemia syndromes) at the

transcriptional and posttranscriptional levels. Dietary glu-

cose can regulate cholesterol absorption by a short-term

mechanism that probably involves a PKC pathway. In

contrast, glycemia may regulate cholesterol absorption by a

long-term mechanism involving insulin action. Our scien-

tific knowledge in this area is still limited, and more

extensive research, as well as further metabolic consequen-

ces, is required to better understand the mechanisms

occurring during meal processing.
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